

#### Adopting Genomics

Sheep Breeders' Round Table



16<sup>th</sup> November 2024

#### Introduction (and an apology)

- Society celebrates its 50<sup>th</sup> anniversary this year
- An original import of 13 rams and 26 ewe lambs
- Approaching 2M animals in the database
- Leading terminal sire breed
- Significant influence on the national ewe flock
- Society continually evolved over the last 50 years
  - Integrating science and technology into the business
  - Overcoming technological barriers
    - Supporting breeders
    - Increasing genetic gain in Texels
- Use of genomics is the latest example



#### Adopting genomics



## Enjoy the ride!

• This hasn't been a quick or straightforward journey

• Where it all began

We collected some data, and learnt plenty

• Where are we now?

• What the future holds...

### In the beginning...

- Initial discussions 10-15 years ago
- Aligned to external consultancy recommendations to AHDB
- Encouraged the collection of genomic data (genotypes) plus measures (phenotypes)
- Why do we want to do this?
  - Determine an animal's value from birth
  - Increased accuracy of selection
  - Greater selection intensity / genetic gain



- Google AI tells us genomics can help improve livestock productivity in many ways
- Why wouldn't we want to do this? Let's crack on

#### What does genomics look like?

#### MAIN POPULATION



Thousands of genetic markers

Genomic predictions

#### If only it was that easy



### Need to build our reference population

- First, we needed a database that was viable, functional and sustainable
- Major project on its own
  - Foundation to build on
  - Delivers core services (pedigree)
  - Support performance recording with associated data pipelines
- Two main aspects of reference population management
  - Size how many animals?
  - Relevance which animals?
- Refresh population every year
- Over time, the reference population is replaced
- Creates an overhead cost for the business





#### Building our reference population

- Ad-hoc and proactive basis
- Genotype all males registered
  - If affordable is a good place to start, provides data on a cross-section
  - Good for pedigree services, but no guaranteed phenotype (trait) data
- Genotyping all CT scanned lambs (gold-standard phenotyping tool)
  - No cost to member (Society-funded)
  - Provides extra CT phenotypes
- Research projects
- Scan weight ref pop >9,000
- CT trait ref pop ~1,500





## What do we gain (and lose) from genomics?

- Two-step evaluation
  - Only benefits genotyped animals
  - Two levels of breeding values (genomic vs non-genomic)
- Single-step evaluation
  - All animals benefit (some more than others)
  - Main beneficiaries are young (unproven animals)
  - Major benefit is an increase in accuracy values
- Compared results from NTS / Texel pedigree and Texel ssgblup
  - Single-step is preferred option
    - Increased accuracy and spread of data
  - Texel data remains in NTS to support this evaluation

|   |                | TERMINAL INDEX |        |        |          |  |  |
|---|----------------|----------------|--------|--------|----------|--|--|
|   |                | Average        | Min    | Max    | Accuracy |  |  |
| า | NTS            | £2.64          | -£4.31 | £15.99 | 44.6%    |  |  |
|   | Texel pedigree | £3.61          | -£6.77 | £18.85 | 44.5%    |  |  |
|   | Texel genomic  | £3.03          | -£4.87 | £17.48 | 45.0%    |  |  |

#### Is it worth it?

- Some animals appear 'worse'
- Only 0.5% increase in average accuracy
- Estimated 15% re-ranking of animals

#### The trouble with our times is that the future is not what it used to be.

Paul Valéry

#### There are other considerations...

- As a valuable modern breed registry, we *should* use genomics
  - To confirm parentage
  - Provide information on single marker traits, e.g. Scrapie
- Provides added confidence in our pedigrees
- More information for breeders about their animals
- 'Threat' of Sheep Ireland
  - Already using genomics extensively
  - Large proportion of Texels exported to Ireland
  - Was possible they'd identify pedigree inconsistencies
- Had to assess level of pedigree inconsistencies
  - Relatively low level of issues

What's the impact on traditional registry services?



#### Adopting genomic evaluations

#### A significant undertaking, and major milestone in Society history

- Two major development aspects run in parallel
  - Development of iTexel to accept and publish the new data
  - Production of the single-step genomic evaluation [with SRUC-Egenes]

- iTexel development
  - Update data tables to accept new data
  - Publishing of parentage-verification data
    - Online
    - Certificates
    - Sale charts
    - Catalogues

- Single-step genomic evaluation
  - Cleaning genotype data and parentage results
    - Correct parentage inconsistencies
    - Retain as much genotype information as possible
  - Analysis of preliminary results

#### Where are we now?

- Running genomic evaluations since March
  - All animals
  - All traits
- Has led to the development and introduction of new policies
- Single marker information published where available
- Parentage routinely checked (updated if necessary) monthly
- Verified parentage information published on iTexel

| DETAILS                                                                                                      |                                                                                                                                                                                                                                                   |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| NAME<br>TEXEL SOCIETY DANNY                                                                                  |                                                                                                                                                                                                                                                   |  |  |  |  |
| FLOCK BOOK<br>NUMBER<br>TXL2000002                                                                           | BIRTH TYPE 2                                                                                                                                                                                                                                      |  |  |  |  |
| DATE OF BIRTH<br>10/03/2020                                                                                  | SEX<br><b>Male</b>                                                                                                                                                                                                                                |  |  |  |  |
| BREED<br>Texel                                                                                               | status<br>Alive                                                                                                                                                                                                                                   |  |  |  |  |
| BIRTH NOTIFIED<br>Yes                                                                                        | REGISTERED<br>Yes                                                                                                                                                                                                                                 |  |  |  |  |
| NBREEDING COEFFI<br>12<br>SCRAPIE GENOTYPE<br>ARR/ARR                                                        | CIENT                                                                                                                                                                                                                                             |  |  |  |  |
| MICROPHTHALMIA GENOTYPE<br>Resistant (G/G)<br>ARENTAGE VERIFICATION<br>Sire DNA-verified<br>Dam DNA-verified |                                                                                                                                                                                                                                                   |  |  |  |  |
|                                                                                                              | DETAILS NAME TEXEL SOCIETY FLOCK BOOK NUMBER TXL2000002 DATE OF BIRTH 10/03/2020 BREED Texel BIRTH NOTIFIED Yes NBREEDING COEFFI 12 SCRAPIE GENOTYPE ARR/ARR MICROPHTHALMIA G Resistant (G/G) FURENTAGE VERIFICA Sire DNA-verifie Dam DNA-verifie |  |  |  |  |

#### How do genotyped animals benefit?

- Compared accuracy values of the Terminal Index
- Animals with / without scan weight phenotype
- Genotyping an animal without phenotyping gives similar accuracy to phenotyping the animal without genotyping it
- Simplest (hassle-free) approach to improve accuracy is to genotype
- Incurs a cost for members
- BUT
  - Does this mean members will stop phenotyping?
  - If so, how sustainable is the reference population?
  - Is there a cost : benefit?

|             | GENOTYPE         |      |      |         |  |
|-------------|------------------|------|------|---------|--|
| Trait       | Phenotype        | Yes  | No   | Overall |  |
| Scan weight | Yes (av. acc. %) | 81.4 | 70.5 | 71.4    |  |
|             | No (av. acc. %)  | 72.5 | 40.8 | 41.4    |  |
|             | Overall acc. (%) | 75.8 | 44.1 | 45.0    |  |

#### **TERMINAL INDEX ACCURACY**

#### For the future

- Continue to innovate
- Define reference population requirements
- Develop a more structured approach to phenotyping and genotyping
- Look 'beyond genomics'

### Acknowledgements



- John Yates
- Board and Committee members
- Paul Phillips
- Staff past and present



- Tim Byrne
- Fiona Hely
- Anouk Schurink



- Karolina Kaseja
- Jo Conington
- Samir Id-Lahoucine
- Mike Coffey



- Andrew Cooke
- Kim Saunders
- Amanda Anderton
- Daniel Buchanan
- Various developers and designers



### A question...

- A change to the usual approach where I answer questions
- An attempt at interaction...
- What does the audience now think...

### A question...



#### A question...

- A change to the usual approach where I answer question Should genomic evaluations be adopted
- An attempt at interaction... for use with all pedigree breeds?
- What does the

# How will individual breeds affordably maintain / increase phenotyping of commercially relevant valuable traits? Improved confidence in pedigree





edsmith@texel.co.uk