Breeding for Eating Quality in Lamb

Daniel Brown, Peta Bradley, Sarita Guy, Liz Pannier, Peter McGilchrist, Sue Mortimer, David Pethick, Andrew Swan

niversity c

Australia's genetics institute for agriculture

- 1. Update on consumer sensory trait analysis
- 2. Across breed genomic breeding values for EQ
- 3. Future

Transition from a commodity product

Source: Lambpro

Resource Flocks in Australia

- 2005 2024
 - Sheep CRC MLA
- Multiple sites across Australia
- 100 sires mated annually
 - Merino
 - Terminal
 - Maternal
- Comprehensive phenotyping of progeny
- SNP genotypes (15K, 50K, HD, Seq)
- Satellite projects with Breeders

Australian sheep reference population

Traits

Composition

- Carcase weight
 n ~ 50,000
- Lean meat yield (%) (CT and DEXA)
 n ~ 11,000

Objective Eating Quality

- Intramuscular fat (%) *n* ~ 41,000
- Shear force (N)
 n ~ 37,200

Consumer eating quality (0 to 100)

- Tenderness
- Flavour
- Juiciness
- Smell
- Overall liking
- Star rating
- *n* ~ 6,500

Consumer sensory trials

- Untrained consumers
- Randomised samples
- Multiple cooking methods

Sire breeds represented in consumer data

Breed Group	Breed	Sires	
Terminal Sires	Composites	44	
	Hampshire	125	
	Southdown	41	1570
	Suffolk	106	12/9
	Texel	83	
	White Suffolk	519	
	Poll Dorset	661	
Maternal	Border	169	
	Composites	247	
	Coopworth	82	
	Corriedale	72	
Shedders	Dorper	152	
	Composites	45	/
Merino	Merino	889	
Total		3235	d

Results

- Wide variation
- Loin scored higher across all sensory traits (on average)

Genetic parameter estimates – Objective lab measures

Trait	\widehat{h}^2	Breed : Within Breed
Carcase Weight	0.49 ± 0.02	2.3
Lean meat yield	0.39 ± 0.03	1.3
Intramuscular fat	0.61 ± 0.02	0.2
Shear force	0.26 ± 0.01	0.2

• High heritability estimates

• Breed difference more important for HCWT and LMY

Genetic parameter estimates – consumer eating quality

Genetic parameter estimates – consumer eating quality

Genetic correlation estimates – within cuts

Loin Tenderness Loin Flavour 0.99 Loin Juiciness 0.98 Loin Overall Liking 0.99 Loin Star Rating 0.99 Topside Tenderness Topside Flavour **Topside** Juiciness Topside Overall Liking Topside Star Rating Hot Carcase Weight Lean Meat Yield Shear Force Intramuscular Fat

0.99 0.99 0.96 0.99 0.99 0.98

Strong positive genetic correlations

γ_g

Genetic correlation estimates – across cuts

Consumer eating quality & carcase composition

Consumer eating quality & objective eating quality

Balanced selection

Correlation of Sire EBVs between Loin Eating Quality and Carcase Lean Meat Yeild

Genomic breeding values for eating quality

- Genomic breeding values for seedstock breeders
- Commercial flock benchmarking
- Genomic only breeding values for within

Merino Select 2015 Drop Average

Conclusions

• Eating quality is growing in importance

- Balanced selection for carcass yield and lamb eating quality now possible:
 - Genomically enhanced breeding values and indexes

- Variation within breeds is generally much bigger than across breeds
 - Utilise both sources of variation

Innovation in Valuing and Breeding for Eating Quality in Lamb

1. LMY and EQ in lamb

Moving away from a commodity product

2. Genetic improvement

Across breed genomic ASBVs for LMY and EQ

2. Industry application

Better tools for better decisions

Technology provides an opportunity – if we have systems to use the data!

Acknowledgements

+ the many staff involved in the funding, projects and collecting data

